Seismic Earth Pressures on Retaining Walls

Jonathan P. Stewart, PhD, PE
Professor and Chair
UCLA Civil & Environmental Engineering Dept.

ASCE Los Angeles Section
Geotechnical Group Dinner Meeting

September 23, 2015
Los Angeles, CA
You can observe a lot by just watching.
Geotechnical Interpretation: Observational method

If you don't know where you are going, you might wind up someplace else.
Never forget the fundamentals.

I usually take a two hour nap from one to four.
We’re geotechnical errors, 50% error isn’t so bad

...when I die, just bury me where you want. Surprise me.
We’ll miss you.
Seismic Earth Pressures on Retaining Walls

Jonathan P. Stewart, PhD, PE
Professor and Chair
UCLA Civil & Environmental Engineering Dept.
Seismic Earth Pressures on Retaining Walls

Jonathan P. Stewart, PhD, PE
Professor and Chair
UCLA Civil & Environmental Engineering Dept.

University of Rome, La Sapienza
Dept. Structural & Geotechnical Engineering
Rome, Italy
March 27, 2015
Seismic Earth Pressures on Retaining Walls

Jonathan P. Stewart, PhD, PE
Professor and Chair
UCLA Civil & Environmental Engineering Dept.

University of Rome, Federico II
Civil & Environmental Engineering Dept.

March 25, 2015
Napoli, Italy
Seismic Earth Pressures on Retaining Walls

Jonathan P. Stewart, PhD, PE
Professor and Chair
UCLA Civil & Environmental Engineering Dept.
Acknowledgements

• Scott J. Brandenberg and George Mylonakis (principal collaborators)
• Ertugrul Taciroglu, Farhang Ostadian, Youssef Hashash, others (fruitful discussions)
ATC-83 Project

Project Technical Committee
Jonathan P Stewart (Chair)
CB Crouse
Tara Hutchinson
Bret Lizundia
Farzad Naeim
Farhang Ostadan

Working Group Members
Curt Haselton
Fortunato Enriquez
Michael Givens
Silvia Mazzoni
Erik Olstad
Andreas Schellenberg

Review Panel
Craig Comartin
Youssef Hashash
Annie Kammerer
Gyimah Kasali
George Mylonakis
Graham Powell
Outline

• Mechanisms for wall-soil interaction
• Current practice & recent research
• Wall-soil interaction springs
• Kinematic wall-soil interaction
• Summary
Interaction Mechanisms

Kinematic soil-structure interaction (SSI)

• Foundation input motion (FIM)
• No external inertial forces
• Pressure from differential wall-soil movements
Physical Basis for *Kinematic SSI Effects*

Low frequency

Long wavelength

\[\lambda = \frac{V_s}{f} \]

\[u_{FIM} \approx u_{g0} \]

\[\theta_{FIM} \approx 0 \]

Negligible wall pressures
Physical Basis for *Kinematic SSI Effects*

High frequency

Short wavelength
\[\lambda = \frac{V_s}{f} \]

\[u_{FIM} < u_{g0} \]
\[\theta_{FIM} > 0 \]

Large wall pressures
Interaction Mechanisms

Inertial SSI
- Inertia in structure produces base shear and moment (V & M)
- V & M resisted by soil reactions (incl. walls)
- Key issue: connectivity of structural lateral force resisting system to walls
Interaction Mechanisms

Important Points:

Both kinematic and inertial effects give rise to seismic earth pressures

Both produce pressures as a result of relative movements between wall and soil.
Outline

• Mechanisms for wall-soil interaction
• **Current practice & recent research**
• Wall-soil interaction springs
• Kinematic wall-soil interaction
• Summary
Current Practice & Recent Research

• Mononobe-Okabe procedure
 – Basis for current standards of practice, with various modifications over time
 – Current guideline using M-O: NCHRP (2008)\(^{(1)}\)

• Results of recent research
 – Centrifuge tests
 – Dynamic SSI analysis

M-O Approach(1)

- Begin with static earth pressure (e.g., K_a or K_0). Resultant P_A.
- Limit equilibrium analysis with seismic coefficient $k_h (\propto PGA)$ in Coulomb-type wedge. Produces P_E.
- Problem: Seismic earth pressure correlated to acceleration

(1) Okabe (1924) and Mononobe and Matsuo (1929)
Consider case of vertically propagating, horizontally coherent, SH wave

Acceleration: $\mathbf{a}_g(z) = -\omega^2 u_0 \cos \left(\frac{\omega z}{V_S} \right) e^{i\omega t}$

Inertia generated by wave resisted by mobilized shear stresses, $\tau_{hv}(z)$

Wave produces no change in normal stresses on vertical or horizontal planes (absent Δu)

∴. Horizontal stresses have no fundamental association with PGA
CCW

σ'_{vo}

\tilde{J}_e

σ'_{ho}

\tilde{J}_e

σ'_{vo}

$\sigma'_{vo} = k_0 \sigma'_{vo}$

— before eqk

— eqk stress \tilde{J}_e

applied.
Centrifuge Tests

- Al Atik and Sitar (2009, 2010)
- U-shaped walls, rigid & flexible. $H = 6.5$ m and $B = 5.3$ m (prototype)
- $D = 19$ m
- 3 time series

Al Atik and Sitar, 2010: *JGGE*
Centrifuge Tests

Total earth pressures. Below M-O predictions.

Al Atik and Sitar, 2010: *JGGE*
Centrifuge Tests

Recommendation: No seismic earth pressure for PGA < 0.4g. M-O over-predicts.

Al Atik and Sitar, 2010: JGGE
Dynamic SSI Analysis

• Ostadan, 2005
• No wall-soil movement at base
• $H = 9.14 \text{m}$. Broadband input
• Strong site response due to rigid base and input energy at $f_1 = V_s/(4H)$

Similar results by Wood, 1973; Veletsos and Younan, 1994;
Dynamic SSI Analysis

- Ostadan, 2005
- No wall-soil movement at base
- $H = 9.14$ m. Broadband input
- Strong site response due to rigid base and input energy at $f_1 = V_S / (4H)$
- Substantially larger pressures than M-O

Ostadan, 2005
Summary of Recent Studies: Free-Standing Walls

• Centrifuge tests tend to support pressures lower than M-O
• Analyses involving a strongly resonant site condition support higher pressures than M-O

No surprise that there is considerable confusion in practice surrounding this issue
Outline

• Mechanisms for wall-soil interaction
• Current practice & recent research
• Wall-soil interaction springs
• Kinematic wall-soil interaction
• Summary
Interaction Springs

- Our objective: wall-soil pressures
- Evaluate from relative displacements and foundation-soil interaction springs
Interaction Springs

We have solutions for:

- Stiffness of surface foundation: K_y, K_{xx}
Interaction Springs

We have solutions for:

- Stiffness of surface foundation: K_y, K_{xx}
- Stiffness of embedded foundation: $K_{y,emb}$, $K_{xx,emb}$
Interaction Springs

We have solutions for:

- Stiffness of surface foundation: K_y, K_{xx}
- Stiffness of embedded foundation: $K_{y,emb}, K_{xx,emb}$

Partition into:

- Stiffness of base slab
Interaction Springs

We have solutions for:

- Stiffness of surface foundation: K_y, K_{xx}
- Stiffness of embedded foundation: $K_{y,emb}, K_{xx,emb}$

Partition into:

- Stiffness of base slab
- Wall contributions (our objective)

Partitioning of stiffness values derived in present work
Interaction Springs

Wall reactions computed using stiffness intensities:

• Defined as stiffness/area on wall.

• Notation: k_y^i and k_z^i

Units of Force/Length3
Interaction Springs

Wall reactions computed using stiffness intensities:

- Defined as stiffness/area on wall.
- Notation: k_y^i and k_z^i
- Units of Force/Length3
Interaction Springs

Approach:

- Develop expressions for k_y^i and k_z^i
- Take as known: K_y, K_{xx}, $K_{y,emb}$, $K_{xx,emb}$ (literature)
- Use equilibrium to relate (K_y, K_{xx}) and (k_y^i, k_z^i) to $(K_{y,emb}, K_{xx,emb})$
- Thereby derive coupling terms (χ_y, χ_{xx})
Interaction Springs

Approach:

• Develop expressions for k_y^i and k_z^i
• Take as known: K_y, K_{xx}, $K_{y,emb}$, $K_{xx,emb}$ (literature)
• Use equilibrium to relate (K_y, K_{xx}) and (k_y^i, k_z^i) to $(K_{y,emb}, K_{xx,emb})$
• Thereby derive coupling terms (χ_y, χ_{xx})
Interaction Springs

Stiffness intensity expressions:

- Rigid vertical wall over rigid base at depth H (Kloukinas et al, 2012: JGGE)
- Rigid vertical wall over finite soil layer, including interaction effects (this study)
Interaction Springs

Stiffness intensity expressions:

\[
k^i_y = \chi_y \frac{\pi}{\sqrt{(1-v)(2-v)}} \frac{G}{H} \sqrt{1- \left(\frac{2\omega H}{\pi V_s} \right)^2}
\]

\[
k^i_z = \chi_{xx} \frac{\pi}{2 \sqrt{1-v}} \frac{G}{H} \sqrt{1- \left(\frac{2\omega H}{\pi V_s} \right)^2}
\]

Dynamic stiffness modifiers:
Unity when \(\lambda/H \to \infty \)
(common condition)
Interaction Springs

Stiffness intensity expressions:

\[
k_y^i = \chi_y \frac{\pi}{\sqrt{(1 - \nu)(2 - \nu)}} \frac{G}{H} \sqrt{1 - \left(\frac{2\omega H}{\pi V_s}\right)^2}
\]

\[
k_z^i = \chi_{xx} \frac{\pi}{2} \frac{G}{(1 - \nu) H} \left(1 - \left(\frac{2\omega H}{\pi V_s}\right)^2\right)
\]

- Modulus taken from \(V_s\) of soil materials adjacent to walls (not below foundation).
- Adjustments for nonhomogeneity and nonlinearity.
Interaction Springs

Stiffness intensity expressions:

\[
k^i_y = \chi_y \frac{\pi}{\sqrt{(1-\nu)(2-\nu)}} \frac{G}{H} \sqrt{1 - \left(\frac{2\omega H}{\pi V_s} \right)^2}
\]

\[
k^i_z = \chi_{xx} \frac{\pi}{2} \sqrt{\frac{2-\nu}{1-\nu}} \frac{G}{H} \sqrt{1 - \left(\frac{2\omega H}{\pi V_s} \right)^2}
\]

Coupling factors
Interaction Springs

Coupling terms: why necessary?

Wall-soil reactions affect multiple stiffness terms for embedded foundation. Examples:

- k_y^i affects $K_{y,emb}$ and $K_{xx,emb}$
Interaction Springs

Coupling terms: why necessary?

Wall-soil reactions affect multiple stiffness terms for embedded foundation. Examples:

- \(k_i \) affects \(K_{y,emb} \) and \(K_{xx,emb} \)
- \(k_i \) affects \(K_{z,emb} \) and \(K_{xx,emb} \)

Unfactored base slab stiffnesses and wall stiffness intensities combine to overestimate \(K_{y,emb} \) & \(K_{xx,emb} \)
Interaction Springs

Equilibrium equations:

Horizontal: \[K_{y,\text{emb}} = 2k_i^y H + \chi_y K_y \]

Rotation: \[K_{xx,\text{emb}} = k_i^y H^2 + \chi_{xx} K_{xx} + 2k_i^z H B^2 \]

Where \(K_j \) and \(K_{jj} \) stiffness terms are from the literature
Outline

• Mechanisms for wall-soil interaction
• Current practice & recent research
• Wall-soil interaction springs
• **Kinematic wall-soil interaction**
• Summary
Kinematic Interaction Problem

- Formulation of solution
- Kinematic model results
- Synthesis of method
- Comparison to centrifuge tests and SASSI results
Formulation of Solution

• Formulate P_E from integration over depth of $k_y^i \times$ relative wall displacement

\[P_E = \int_0^H k_y^i (u_{g0} \cos kz - u_w(z)) \, dz \]

• Similar expression for M_E

• Equations apply for uniform V_s and rigid wall
Formulation of Solution

• Wall displacement affected by translation and rotation

\[u_w(z) = u_{FIM} + \theta_{FIM} (H - z) \]

• Wall force balanced by base shear

\[
P_E = \int_0^H k_y^i \left[u_g^0 \cos kz - u_{FIM} - \theta_{FIM} (H - z) \right] dz
\]

\[
P_E = \frac{K_y}{2} \left[u_{FIM} - u_g^0 \cos kH \right]
\]
Formulation of Solution

• Wall displacement affected by translation and rotation
 \[u_w(z) = u_{FIM} + \theta_{FIM} (H - z) \]

• Wall force balanced by base shear

• Similar eqns for \(M_E \)

• System of eqns solved for \(u_{FIM} \) and \(\theta_{FIM} \)

• \(P_E \) and \(M_E \) computed
Base Slab Motions

- Ordinate: FIM / \(u_{g0} \) ratios
- Abscissa: \(\lambda / H \)
- Translation decreases for small \(\lambda / H < \sim 10 \)
- Rotation increases for same conditions
- Kausel et al. (1978) model ok for translation, low for rotation
Kinematic Model Results

- Ordinate: $P_E/(u_0k_yiH)$
- Abscissa: λ/H
- Peaks at $\lambda/H = 2.3$
- Small for $\lambda/H > \sim 10$
Kinematic Model Results

- Ordinate: $P_E/(u_g k_i H)$
- Abscissa: λ/H
- Peaks at $\lambda/H = 2.3$
- Small for $\lambda/H > \sim 10$
- Modest effects of relative foundation-wall stiffness

Critical finding: interaction force depends strongly on λ/H
Kinematic Model Results

• Can relax uniform soil assumption

Peak shifts to right. Amplitudes decrease.

Figure: Scott Brandenberg
Mode shape for soil displacement behind wall. As \(n \) increases, displaced shape becomes nearly vertical.
Kinematic Model Results

- Can relax rigid wall assumption

Figure: Scott Brandenberg
Synthesis

1. Compute FFT of free-field motion, $\hat{u}_{g0}(\omega)$
2. Compute foundation stiffnesses, k_y^i, k_z^i, K_y, K_{xx}, K_{y_emb}, K_{xx_emb}
3. Solve for FIM in frequency-domain: $\hat{u}_{FIM}(\omega) \hat{\theta}_{FIM}(\omega)$
4. Solve for P_E in frequency-domain: $\hat{P}_E(\omega)$
5. Inverse Fourier transform to $P_E(t)$
Synthesis: Simplified Approach

1. Estimate mean period, T_m, from GMPE
2. Compute $\lambda/H = V_s T_m/H$
3. Use graphical result for $P_E/(u_{g0}k_yiH)$ vs. λ/H to find normalized force
4. Compute k_y^i
5. Estimate u_{g0} as PGV/ω, where $\omega=2\pi/T_m$
6. Solve for maximum value of P_E
Comparison to Prior Results

In theory there is no difference between theory and practice. In practice there is.

– Yogi Berra

\[\frac{P_E}{u_0k_yH} \]

\[K_{xx}/(k_yH^2/3) = 100 \]

- **SASSI**: \(\lambda/H = 4 \)
- **Centrifuge**: \(\lambda/H = 12 \)
Comparison to Prior Results

(a) Analysis of Simulations by Ostadan (2005)

- **Good match**

(b) Analysis of Centrifuge Tests by Al Atik and Sitar (2009)

- **Right resultant.**
- **Wrong shape.**
Considering profile inhomogeneity...

Rigid Wall, Constant V_s Profile
$P_E = 150$ kN/m

Flexible Wall, Parabolic V_s profile
$P_E = 86$ kN/m

Mononobe-Okabe $P_E = 180$ kN/m

Measured $P_E = 90$ kN/m

Figure: Scott Brandenberg
Pending Comparisons to Experimental Results

UCB-UCD-NEESR centrifuge test data (Mikola et al., 2014)

U. Colorado Boulder centrifuge test data (Hushmand et al., 2015)

U. Bristol-U. Naples-U. Sannio shake table testing (Kloukinas et al., 2014)

UCSD-NEESR shake table testing (Wilson and Elgamal, 2015)
Summary

• Seismic earth pressures on walls result from relative wall/free-field displacements.
• These relative displacements can arise from distinct inertial and kinematic mechanisms.
• M-O procedures capture neither mechanism.
• The seismic earth pressure increment has no fundamental relationship to PGA.
Summary

• Kinematic wall pressures governed by u_{g0} and λ/H. Often small for practical conditions.
• Proposed procedures resolves conflicting findings in literature
• No specialty software required
• Inertial interaction computed using dynamic analysis of structure with foundation springs. Wall pressures depend on load path.
Details in:

Java Applet at:

http://uclageo.com/
References

When is Inertial Interaction Important?

\[
\tilde{T} = \sqrt{1 + \frac{k}{k_x} + \frac{kh^2}{k_{yy}}}
\]

Most critical factor for is \(h/(V_s T) \).

The flexibility (period) and damping of the system are affected.
Period Lengthening Trends

Inertial SSI significant if $h/(V_sT) > 0.1$
Foundation Damping Trends:

![Diagram showing the relationship between h/(V_sT) and β_f for different values of h/B: h/B = 1 (solid line), h/B = 2 (dashed line), h/B = 4 (dotted line). The plot shows an increasing trend in β_f as h/(V_sT) increases for all values of h/B.](image-url)
Effects of Period Lengthening & Damping on Base Shear

\[S_a(g) \propto \text{Base Shear} \]

\[\tilde{T}, \beta_0 = \text{Flexible-base period, damping ratio} \]
\[T, \beta_i = \text{Fixed-base period, damping ratio} \]
\[T_p = \text{Predominant period of ground motion} \]

(i.e., period of largest spectral peak)

Increased base shear

Decreased base shear
Response History Recommendations

- Apply bathtub model (no multi-support excitation req’d)
- Wall springs can be evaluated from k_y^i
- Computed wall spring forces applied in combination with kinematic loads

Source: NIST (2012)

Large wall demands from inertial SSI require rigid foundation or lateral load transfer above base level
Java Applet Demonstration